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1 Localization and Prime Ideals

Definition (notation). Let R and S be as last time (recall that S denotes a multiplica-
tively closed subset of a commutative ring R). Let SpecS(R) be the set of prime ideals
of R which are disjoint from S.

Proposition. The ideal correspondence from last time is a bijection of lattices when
restricted to Spec(S−1R)→ SpecS(R). This is given by B 7−→ {a ∈ R : a/1 ∈ B}, with
the inverse map given by sending A ∈ SpecS(R) to S−1A.

Proof. First check if p ∈ SpecS(R) implies S−1p ∈ Spec(S−1R). Suppose r1/s1, r2/s2 ∈
S−1p then there is s ∈ S such that r1r2 ∈ p. But p ∩ S = ∅ so r1r2 ∈ p by primality.
So again by primality, r1 ∈ p or r2 ∈ p so r1/s1 ∈ S−1p or r2/s2 ∈ S−1p.
Next check if B ∈ Spec(S−1R) then A = {a ∈ R : a/1 ∈ B} ∈ SpecS(R). Suppose
ab ∈ A. Then ab/1 ∈ B so (a/1)(b/1) ∈ B. So by primality a/1 ∈ B or b/1 ∈ B. So
a ∈ A or b ∈ B. Lastly we must check that composition both ways is the identity. We
saw last time that if B is just any ideal of S−1R, then S−1{a : a/1 ∈ B} = B. So it
remains to show for p ∈ SpecSR the ideal A = {a : a/1 ∈ S−1p} is equal to p. Take
a ∈ p, then a/1 ∈ S−1p so a ∈ A. Take a ∈ A so that a/1 ∈ S−1p so there exists s ∈ S
such that as ∈ p. But p ∩ S = ∅ and p is prime so a ∈ p.

Corollary. We always have Kdim S−1R ≤ Kdim R.

Proof. Given p ∈ SpecS(R) any chain with p at the top consists only of prime ideals
disjoint from S so height of p is the same as height of S−1p. So the result follows.

Proposition. R and S as before with S ⊂ C. If R is integral over C, then S−1R is
integral over S−1C.

Proof. Take r/s ∈ S−1R. Then r/1 is integral over S−1C by the same polynomial
which makes r integral over C. Also, 1/s ∈ S−1C so it is certainly integral. Hence,
r/s = (r/1)(1/s) is integral over S−1C. This gives the desired result.
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2 Local Rings

Definition (notation). Take p ∈ Spec(R) and localize at S = R \ p. Then S−1p is the
localization of R at p, also denoted Rp. Likewise pp is the image of p in Rp.

Proposition. Let p, R, and S be a above. Then

1. Rp has a unique maximal ideal Pp.

2. p and Rp have the same height, which is equal to Kdim Rp.

Proof. For the first assertion, let M be a maximal ideal of Rp. Let A = {a : a/1 ∈M}
and note A ∩ S = ∅. But then A ⊆ p. So M ⊆ pp. But M is maximal so M = pp. For
the second assertion, note the first equality follows since the prime ideals contained in
p are preserved in Rp. The second equality now follows by the first assertion.

Example: Let R = Z. Let p = pZ for some prime number p. Then S = Z \ p = {n ∈
Z : gcd(n, p) = 1}. So Zp = {m/n : m ∈ Z, gcd(n, p) = 1} .

Definition (Local Ring). A commutative ring R is said to be a local ring if R has a
unique maximal ideal.

Observe that the localization of a commutative ring at a prime ideal p is clearly a
local ring.

Proposition. The following are equivalent.

1. R is a local ring.

2. The set of all non-invertible elements of R is an ideal.

3. The sum of any two non-invertible elements is non-invertible.

4. If a + b = 1 ∈ R, then a or b is invertible in R.

Proof. Note statement 2 clearly implies 3. Let us begin by showing that 3 implies 4.
Note the contrapositive of 3 is: if a + b is invertible, then a or b is invertible. So 4 is
a special case of the contrapositive of 3. Now to show 4 implies 3, suppose a + b = u
for some unit u in R. Then au−1 + bu−1 = 1. So by statement 4 either au−1 or bu−1

is invertible, so a or b is invertible. This implies the contrapositive of 3, and hence
3 itself. Now to see that 3 implies 2, take a a non-invertible element of R and let
r ∈ R. Consider ra. If ra had an inverse, then ra(ra)−1 = 1 so that a(r(ra)−1) = 1,
a contradiction. This shows that ra is non-invertible. Hence, the set of non-invertible
element forms an ideal. Lastly, it remains to show that the first two statements are
equivalent. To see that 2 implies 1, let P be the set of non-invertible elements. By
assumption, P is an ideal and is maximal as any other element adjoined to it would
give 1. If Q were another maximal ideal with Q 6= P , then Q contains an element not
in P , and hence a unit, a contradiction. Lastly, to show that 1 implies 2, let P be the
unique maximal ideal. Take a ∈ R not invertible. Then Ra is an ideal so Ra ⊆ P , and
so a ∈ P .
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Note: 1. If R is a local ring with maximal ideal P , then if a ∈ P we have 1− a is
invertible by statement 4 of the Proposition above.

2. If R is affine, then it is Noetherian, and so RP is Noetherian. But RP is not
affine.

Proposition. Let R be a domain. Then R =
⋂

P maximal ideal of R RP .

Proof. Take a ∈
⋂

RP . Let B = {b ∈ R : ba ∈ R}. Note B is an ideal. Suppose
B ( R. Then B ⊆ P and P a maximal ideal of R. But a ∈

⋂
RP so a ∈ RP . This

means a = r/q, where r ∈ R and q /∈ P . Then qa ∈ R so q ∈ B ⊆ P , a contradiction.
This gives B = R; 1 ∈ B and so a ∈ R. The other direction is trivial, and so we are
done.

Proposition (Nakayama’s Lemma). Let R be a local ring with maximal ideal P . Let
M be a non-zero finitely generated R-module. Then PM 6= M .

Proof. Write M = Ra1 + · · ·+Ran, for some a1, . . . , an ∈M with n minimal. Suppose
to the contrary that PM = M . Then we can write an =

∑n−1
j=1 pjaj for suitable choices

of p1, . . . , pn−1 ∈ P . Then

(1− pn)an =
n−1∑
j=1

pjaj,

for some pn ∈ P . But 1−pn is invertible so that an can be written in terms of remaining
n− 1 generators, contradicting the minimality of n.

Corollary. Let R,P , and M be as in Nakayama’s Lemma. Then for every submodule
N 6= M , we have N + PM 6= M .

Proof. Apply Nakayama’s Lemma to M/N to get P (M/N) 6= M/N . So N + PM 6=
M .

Corollary. Let R,P , and M be as above. Let B ⊆ M be such that the image of B in
M/PM spans M/PM (as a vector space over R/P ). Then B spans M .

Proof. Let N =
∑

Rbj. The image of N in M/PM is M/PM . So N + PM = M .
Applying the previous corollary gives N = M .

Corollary. Let R be a domain and let P ∈ Spec(R). Suppose A is a non-zero ideal of
R with A ⊆ P such that A is finitely generated as an R-module. Then PA ( A.

Proof. If PA = A, then PPAP = AP in RP , contradicting Nakayama’s Lemma.
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3 Artinian Implies Noetherian for Commutative Rings

Recall that we noted last time that if a module is both Artinian and Noetherian, then
it must have a composition series. We now prove that the converse holds when the
underlying ring is commutative.

Proposition. Let M be an R-module. If M has a composition series, then M is both
Artinian and Noetherian.

Proof. Since M has a composition series, say of length n, any other composition series
can be refined to a composition series that is equivalent and so has length at most n.
So M is both Artinian and Noetherian.

Theorem 3.1. If R is an Artinian commutative ring, then R is Noetherian.

Proof. Suppose R is Artinian. Consider all ideals of R which are products of maximal
ideals of R. Since R is Artinian, we may choose a minimal such ideal, say J . We would
like to show that J = 0. First, note if M is any maximal ideal of R, then MJ = J by
minimality of J . Consequently, J ⊆ M . Otherwise, there exists j ∈ J with j /∈ M .
This means j /∈ MJ ⊆ M , a contradiction. Second, J2 is also a product of maximal
ideals so again J2 = J , by minimality of J . Now suppose J 6= 0. Consider the set of
all ideals not annihilated by J ; choose I minimal with respect to this property. Then

0 6= IJ = IJ2 = (IJ)J,

so IJ = I, by minimality of I. In particular, there exists f ∈ I with fJ 6= 0. So the
minimality of I implies I = (f); i.e., I is generated by f . Hence, there exists g ∈ J
with fg = f (recall we had IJ = I). So (1 − g)f = 0. But J is contained in every
maximal ideal, and so g is also contained in every maximal ideal. But then 1 − g is
contained in no maximal ideal; in other words, 1− g is a unit. This immediately gives
f = 0, contradicting the assumption that J 6= 0.
Now we have M1 · · ·Mt = 0 for some maximal ideals Mi of R. Consider, for each s ≥ 0,

(M1 · · ·Ms)/(M1 · · ·Ms+1).

Note this is a vector space over R/Ms+1. Since any subspace is a submodule, this
corresponds to an ideal of R containing M1 · · ·Ms+1. But R is Artinian so the vector
space is Artinian, and thus is finite dimensional over R/Ms+1. But this means it has a
composition series. Building these together we obtain a composition series for R; i.e.,
R is Noetherian.
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